量子会計士

先輩、それ本気でノイマン型でやるんですか?!と言われないためにあがく。

Quantum Information Science I メモ その10 内積

内積(Inner product)

普通の内積 
\def\bra#1{\mathinner{\left\langle{#1}\right|}}
\def\ket#1{\mathinner{\left|{#1}\right\rangle}}
\def\braket#1#2{\mathinner{\left\langle{#1}\middle|#2\right\rangle}}\\
\require{HTML}
\displaystyle \braket{\psi}{\phi}=\sum_{00}^{11}\psi^{*}_i{\phi}_i

\displaystyle \psi_1 = \ket{\phi_1}\otimes\ket{\phi_2}, \displaystyle \psi_2 = \ket{\phi_3}\otimes\ket{\phi_4}

とすると

\displaystyle \braket{\psi_1}{\psi_2}=\braket{\phi_1}{\phi_3}\braket{\phi_2}{\phi_4}

証明というか、計算は

\displaystyle \phi_1=(\alpha_1\ket{0}+\beta_1\ket{1})

\displaystyle \phi_2=(\gamma_1\ket{0}+\delta_1\ket{1})

\displaystyle \phi_3=(\alpha_2\ket{0}+\beta_2\ket{1})

\displaystyle \phi_4=(\gamma_2\ket{0}+\delta_2\ket{1})

とすると

\displaystyle \psi_1= \ket{\phi_1}\otimes\ket{\phi_2} = (\alpha_1\ket{0}+\beta_1\ket{1})(\gamma_1\ket{0}+\delta_1\ket{1})

\displaystyle \psi_2= \ket{\phi_3}\otimes\ket{\phi_4}  = (\alpha_2\ket{0}+\beta_2\ket{1})(\gamma_2\ket{0}+\delta_2\ket{1})

\displaystyle \braket{\psi_1}{\psi_2}=\alpha_1^{\ast} \gamma_1^{\ast}\alpha_2 \gamma_2 + \alpha_1^{\ast} \delta_1^{\ast} \alpha_2 \delta_2 + \beta_1^{\ast} \gamma_1^{\ast}\beta_2 \gamma_2 + \beta_1^{\ast} \delta_1^{\ast} \beta_2 \delta_2

\displaystyle =(\alpha_1^{\ast}\alpha_2 + \beta_1^{\ast}\beta_2)(\gamma_1^{\ast}\gamma_2 + \delta_1^{\ast}\delta_2)

\displaystyle = \braket{\phi_1}{\phi_3}\braket{\phi_2}{\phi_4}